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ABSTRACT

This article deals with necessary conditions for problems in the

calculus of variations that incorporate inequality constraints of the form

)
Hereto fore , such problems have been ~~~U~~~~to the equality case by a

method due to F. A. Valentin~ ;>It is shown that by avoiding this transi-

tion and treating these problems directly, the classical mult i plier rule

can be obtained under significantly weaker regularity and rank hypotheses.

Besides extending the known results in the case of smooth data , the

present work generalizes the multiplier rule to nondtfferentiable functions .

In § 3 we resurrect Queen Dido in order to present an example of a varia-

tional problem involving a nondiffe rentiable function .

AMS (MOS) Subj ect Classification : 49B 10

Key Words: Multiplier rule , Inequality constraints , Problem of Mayer ,
Problem of Lagrange , Nondi fferentiab le functions

Work Unit No. 2 (Other Mathematical Methods)

*Department of Mathematics , University of Briti sh Columbia , Vancouver .
B .C . ,  Canada V6T 1W5.

Sponsored by the United Sta tes Arm y under Contract No. DAA GZ9-75 -C-0024.

~24i~,~j ~~~~ 
-

-i ~ r-r- 

~r~i ~~~~~~~~~



INE Q U A LIT Y CONSTRA iNTS IN THE CALCULUS OF VARIATIONS

Frank H. Clarke

1. introduction. The classical multip lier rule.

The purpose of this section is to review the multiplier rule in order

tc p ldce the res ults of this report in perspective . Let us begin by

con si~~~ruig the following problem of Mayer in the calculus of variations:

we seek to minim ize

z.  1)  ~‘( x( 1))

over a class of functions x : [0 , 1 j -. R n , subject to the boundary

condit ions

(1 .2) x(0) E C0, x( 1 ) € C~

as well as th e equality constraints /
1. 3) f . ( x( t ) ,  ~( t ) )  0 (1 = 1 , 2 , .. ., r; t 10, 1 ~~~ 7
In the above, the func tions ~ and f and the sets C and C —~~~~~i 0 1

are given; we leave unspecified for now the class of functions x

admitted to competition , as well as other details. Let us mention the

well-known fact that superficially different problems involving the

minimization of integrals can be reshaped to fit the above mould (see

1 1 0 , Chapter 6 J ) .

)
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Suppose now that the function z solves this problem. The

“multipl ier rule ” is a theorem stating that, under suitable hypotheses,

there exist functions X
~ 

(1 1, 2, .. ., r) not all zero (these are the

“Lagrange multipliers ”) such that z satisfies the Euler equation for

the minimizat ion of the Integral

1f
0 i i

(summations are from 1 to r). That is, the following differential equation

holds:

(1.4) {~ ~i~
)2Yz, Z ) }  = ~ X~D1f1(z, 

j )

(D
1 

and D2 denote differentiation of f(x, c) with respect to the x

and x variables respectively.)

The proo f of the mul tiplier rule was finally completed by Hilbert

following the contributions of many mathematicians (see [ z J  for historical

details). It turns out that the main requirement to assure its validity

is the following :

the vec tors D2f.(z, z) in R~ are linearly
(l .s) 1

independent for each t .

Consider now a di fferent problem , where instead of the equality

constraints (1. 3) being imposed , we have the inequality constraints

(1. 6) f~(x ,~) < 0 (i 1,2, . . . , r) .

-2- 



Forty years ago , F. A. Valentine [11 1 proposed a method (called

that of “slack variables ”) whereby this problem could he treated by the

existing theory for the case of equality constraints; ever since , it is

this method that has been used In handling constraints of the form (1.6)

(see for example [11, [7j). When the multiplier rule is applied to the

problem via Valentine’s method, the analysis yields as before a nontrivial

set of \ satisfying (1. 4). Additionally, it follows that the k, are

nonnegative, and that for any t such that f.(z, z) < 0  (the constraint

f . < 0 is then said to be inactive), we have x . ( t )  = 0.

We stress that this approach to the multiplier ru le for inequality

constraints requires (as in the equality case) that hypothesis (1. 5) be

made (for the active indices).

The central thesis of this article is that the case of inequality

constraints is best treated on its own . For example , we will show

(Corollary 2) that in the example discussed above, hypothesis (1. 5)

can be replaced by the following weaker condition:

the vectors D f (z, ~) (active indices i) are
(1.7) 2 i

convexl y independent for each t,

by which we mean that no convex combination of these vectors is equal

to zero. An Immediate consequence of this is that we are now able to

treat problems in which the number of (active) inequality constraints

is greater than the dimension n (this would be precluded , of course ,

by condition (1. 5)), and possibly infinite .

—3—
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An equally important  feature of the results is that no di fferentiability

hypotheses intervene . We give an example in § 3 of a variant of a

classical problem in which a nondifferentiable function appears quite

naturally . The next section is devoted to the statement and elaboration

of the ma in res ult, the proof of which is given in § 4.

— 4 —



2. A new mul t i p l ie r  rule.

An arc is an absolutely continuous function x : [0 , 11 -~~ Rn . We

are given the funct ions c’ : Rn R and f : Rn X Rn 
-. R , as well as

two subsets C0 a nd C1 of R~ . The problem we consider is the

following : to min imize

(2.1) q’(x(l))

over all arcs x which satisfy

(2.2) x(0) c C0, x(l) E C
1

as well as the inequality constraint

(2.3) f(x,x)< 0 a.e.

The notation “a.e. “ signifies “for almost all t in [o , i J ” , fri the

sense of Lebesgue measure . The cho ice of the interval [0 , l J  is merely

a convenient normalization.

The following hypotheses are made throughout: C0 
an d C

1 
are

closed, and ~‘ and f are locally Lipschitz. The requirement that q’

(for example) be locally Lipschltz is equivalent to the following : for

any bounded subset B of R’~, there Is a scalar K (depending on B)

such that for all x1 and x 2 in B, we have

— q,(x
2 ) I  < Kj x 1 

— x2 1

The classical multiplier rule is stated in terms of derivatives.

Strice -‘h ff erent i ab il i ty  ~s not being posited , a substitute for derivatives

will be ised. This Is the “generalized gradient ” introduced by the

*
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author in [ 3 1  (see [ . J  for the inf ini te-dimensional  de f in i t i on ) .  In the

case of a locally Lip schitz function g : Rn 
- R , the general ized

grad ient of g at the point x , de noted ag(x) ,  may be defi ned as

foll ows:

( 2 . 4 )  ag(x) = coj r ~ : li m ~‘g (x .) ,  lim x . = x}
i

.,jS
~ ~~~

That is , we consider all sequences x , converging to x such that

~ . g (x ~) exists for each i , and such that the indicated limit ~, exists .

The convex hull of all the points 1’, obtained in this way is ag(x) .

It is evident that if g is C1, then ag(x) = f 7g(x)) .  Furthermore ,

it may be shown that when g is convex , ag(x) is the subdifferential

of convex analysis [8 J .

We now recall some terminolog y famil iar  from the calculus of

variations. The arc z is a weak lpc~~ minimum in the above problem

if , for some positive c , z solves the minimization problem (2 .1 )  - ( 2 . 3 )

relative to the arcs x satisfying

I x ( t )  — z(t )~ < C , h~(t) — ~(t) i < C  a.e.

The arc z is piecewise-smooth if there is a partition 0 = t0 < t1 < t
k

of [0 , I i  such that z exists and is continuous on ( t . 1, t .) (i 1, 2 , . . ., k)

and admits finite limits at hoth t i_ I  ( f rom the right) and t . ( from the

left) .  These limits are denoted z(t , 1 s) and ~(t~-) respectively.

When z fails to be differentiable at a point, z Is said to have a

corner there .

-6-
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Definition. For a piecewise-smooth arc z , we say af is regular

along z if the following condition is sati s fied for all t such that

f( z( t ) ,  ~( t))  0:

(2.  5) (R ’~ )‘ {o)) fl af( z , ~) =

where for corner points t the condition is understood to hold with ~(t )

rep laced by both ~(t+) and ~(t-) .  Thus ~f is regular along z when

the i-component of any element of af( z , ~) is nonzero , for any t such

tha t f( z ,~~) = 0.

Theorem 1. Let the piecewise-smooth arc z provide a weak local

minimum for the problem (2.1) - (2 .  3), where 8f is regular along z.

rhen there exist an arc p, a measurable function X : [0, 11 -
~~ R,

and a scalar equal to 0 or 1 such that:

(2.6) (~(t),p(t)) E X(t)8f(z(t),~ (t)) a.e.,

(2.7) X(t)~~ 0, x (t) = 0 when f(z( t),~ (t)) <0 ,

( 2.8) p( O) is normal to C0 at z(0)

(2.9) there is a vector ~, in a~ (z( l)) such tha t

— is normal to C1 at z(l)

(2.10) Ip ( t) t + is never zero

Remark I. The word “normal” appearing in the “transversality conditions ”

(2 .8 )  - (2 .9 )  is used in a generalized sense defined in [3 1;  this reduces

to the usual concepts in the case of a C1-manifold or a convex set. When

there Is no endpoint constr~ int ( i .e .  C1 = Rri ), it follow s that = 1,

arid (2 .9 )  becomes

—p( l ) 8~ (z( 1))

—7—
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The app l i cab i l i t y  of Theorem I may at first appear limited due to

the tact that  only the single inequality constraint (2 .  3) is considered ,

whereas most  problems will incorporate mult iple constraints.  We shall

see tha t  in mak ing  the t ransi t ion to such problems , the fact that f

need not be - l it fe ren t iab le  is crucial . We indicate at the end of §4

the modi fications to be made in Th eorem 1 when f has an explicit

dependence on t .

Let us now consider the problem of minimizing (2 .1 )  subject to

( 2 . 2 )  and the r inequ ality constraints

(2 . 11) f .(x , x) ~ 0 (i = 1, 2 , . . . , r)

We shall suppose that each I~ is locally Lipschltz. Let us define f

as follows:

(2.12) f(s , v) = max f~(s , v)
l < i < r

Then the system of inequalities (2.11) Is equivalent to the single

inequality (2 .  3).

Cor ollary 1. Let the piecewise-smooth arc z provide a weak local

minimum for the problem of minimizing (2.1) subject to ( 2 . 2 )  ari d (2.11),

and suppose that for each t , fo r each point 
~~l’ ~~ 

In the common

convex hull of the sets

8f 1(z , ~), i active ,

we have r,2 ~ 0 . Then triere exist an arc p, measurable functions

-8-



4 : [0 . l~ - R (i = 1, 2 , r) ,  and a scalar  equal to 0 or 1

such that  ( 2 . 8 )  - (2 .10 )  hold , and also:

(~ , p) ~ ~~(t ) 8f .(z , ~) a. e.

2 .1 4 )  ~ 0 , x. . ( t )  = 0 when f~(z , ~) < 0

Proof: When f is defined by (2 .  12), the set af( s, v) is contained in

the common convex hull of the sets af .(s , v) over the indice s i for

which the max imum in (2 .12 )  is attained [ 6 , Proposition 9 j .  It follows

from this that  d f  is regular along z , so that Theorem 1 may be

applied. Upon invoking a measurable selection theorem (see for example

[ 9 1 ) ,  ( 2 . 6 )  yields: there exist  nonnegative measurable functions

such that

~~ p) ,~(t )  Z v1 ( t ) a f 1 (z , ~;)

a nd if f ( z , ~) < 0 then either x( t )  or ~y 1(t) is zero . The required

conclusions now follow upo n cetting 
~~~

. = Q. E. D.

We now specialize to the classic case of continuous differentiability.

As men tioned in § I , hypothesis (1 .5 )  is replaced by the less restrictive (1 .7) .

Corollary 2. Let the piecewise-smooth arc z solve the problem of

min imiz ing  ( 2 . 1 )  subject to ( 2 . 2 )  and the r inequalities (2.11), where

the functions 1. are C1. Suppose that condition (1.7) holds. Then

there exist measurable functions (i = 1, 2 , .. . , r) and a scalar

equal to 0 or 1 such that:

( 2 . 1 5 )  p ( t )  ~~\~( t )D 2 f .(z , ~) is an absolutely continuous

function of t sa t i s fy ing  (2 . 8 )  — (2.10),

- 
.
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(2.16) ~~~ . 
> 0 , x ( t )  0 when f(z, z )  < 0

0 1 1 1

(2.17) {~ \ . ( t ) D2 f ( z , ~)) = � X . ( t )D 1f .(z , ~)

Proo f: It suf f ices  to apply Corollary 1, noting that generalized gradients

reduce here to derivatives. Q .E . D.

Remark 2. In analogy to the classical case , the above allows u s to

assert that the X are not all zero if no vector in — a~ ( z ( l ) )  Is normal

to C1 at z(l).

Remark 3. There is a theorem concerning the generalized gradient of

the upper envelope of a family  of functions [ 3 , Theorem 2. 1] that can

be used to derive from Theorem 1 a version of the multiplier rule for an

inf in i te  number of constraints , in a manner completely analogous to that

in which the above corollaries were obtained.

-10-



3. Example - Queen Dido and the badlands.

Queen Dido is given a length of cord with which to enclose a region

along the shote , the latter being represented by the line x = 0 in the

t - x plane (see Figure i). 1n doing this , she seeks to join the point

(0 , 0) to the point ( 1 , 0) by a curve of length L lying in the hal f -

plane x > 0 so as to maximize the area between the curve and the

t-axis.  The problem as described to this point is classical , but let us

now suppose that for a given positive a , the terrain x > a is

inferior , and worth only half as much as the terrain x < a .  The return

corresponding to a choice of border function x(t) is then

1
(3 .1)  f  g(x(t ) )dt

0

where

g( x ) =  x if x < a

(x + a)/2 If x > a .

Her majesty is seeking to maximize (3.1) (or minimize its negative)

subjec t to

( 3 . 2 )  x(0) = 0, x( 1) = 0

I i
(3. 3) f~~I l +~~

2 d t = L .
0

Note that g is Lipschitz and nondifferentiable .

We proceed to place this problem within the framework of § 2 ,

Corollary I. We consider the two additional variables y and z and

—11—
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the constraints

(3.4) 1
1
(x, y, z, ,r, ~, ~) —

~~‘ — g( x ) <0

(~~~~
. 

~~ ) f 2 (x , y, z ,~c, ~, ~) = -
~~~ ~ 

2 
~

( 3 . 6) x(0) = 0, y(O) = 0, z(O) 0, x(l) = 0, z(l) = L ,

and we define

(3.7) ~‘(x(l), y(l), z(l) )  = y(l)

It is not d i f f icul t  to see that the problem of minImizing ( 3 . 7 )

subject to (3.4) - (3.6) is equivalent to Queen Dido ’s. The equality

( 3 .  3) has been replaced by

f

1
J~ +~~

2 d t < L

in this transition, which makes rio difference in as much as all the

available cord will be used. In fact, it is clear from the nature of the

problem that both constraints (3.4) and (3.5) will be active at all times.

In applying Corollary 1, note that the vector x is here replaced

by (x , y, z) , that n = 3 and r 2. The sets C0 and C1 are

{(O,0,0)) and ~o) x R x (L) respectively. The functions involved are

Lipschitz as required , and the sets af 1 and ci f
2 

are seen to be:

8f 1(x , y, z , c , 
~
‘, ~) {(~ , 0, 0, 0, — I , 0 ) :  —

~~~ ag(x) )

812(x ,y ,  ~~~~~ ~) {(0 , 0 , O ,~~,4 ~ ,~~~, 0 , -i ) )

from which we infer that the conclusions of Corollary 1 are ava ilable

— 1 3—
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to us for any piecewise-smooth solution , which we sh all denote (x , y, z).

We deduce the exi stence of nonnegative functions 
~l an d su ch

that:

the function p(t)  defined by

p(t) = ~~~~~ x~~~~ ]

Is absolutely continuous, and

(3.8) ~(t) {—x 1(t)ag(x)} x ~0) x 
{o)

It follows that and are constant. From (2.9) we obtain:

- = 0

I f is zero , then is zero also, and it follows from (2 .10)  that

must be strictly positive . But then (3.8) implies that the sign of

x is constant, which is not possible except in the degenerate case L

We may thus suppose X..~ I = 
~~ 

Now if were zero , ( 3 . 8 )

would yield

0 8g(x)

which is not possible in view of(2.4). Thus is positive.

We have arrive d at the following conclusions: ~ is continuous

and sa tisf ies the equation

( 3 . 9 ) + ~~~ = IA 2 if x < a

—l/ ( A 2 ) if x > a .

Note that x(t) cannot equal a in any Interval , since zero does not

belong to ag(a).

-14-
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The solutions to the two separate cases in (3.  9) are well-known ,

since each case is the type of equation that arises in the classical

ver sion of Queen Dido ’s problem. We find with no d i f f i cu l ty  that x

describes an arc of a circle of radius K 2 for x < a , ari d an arc of

a circle of radius 2K 2 for x > a. The requirement that these arcs

meet w ith a common tangent (at x = a) assure s that to each

there corresponds at most one such configuration (see Figure 1) .

Consequently, the optimal arc x is uniquely specified once K 2

is known ; is determined by the condition that x is of given length

L. Once the natur e of x is known to be as described above , it is an

easy exercise to obtain (implicit)  equations for K 2 (and the other

parameters of the solution) . These relations could then be used to

calculate explicitly the solution x .

It is interesting to determine the nature of the information contributed

by the new multiplier rule. Based on the known classical solution ,

one might expect the solution to the present problem to consist of an

amalgam of circular arcs on either side of the line x = a (as indeed it

does). The multiplier rule has served to rule out the possibility that

x lies along the line x = a for any length of time , and has yielded

the crucial facts that the radii of the upper and lower arcs are in the

ratio of two to one , and that these three pieces are smoothly joi ned .

Thus the info rmation obtained from its use has been essentially global .

- 15—
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(I

L Proof of Theorem 1.

For ease of notation , we denote f z ( t ) ,  ~( t ) )  and d f ( z ( t ) ,  ~( t ) )

by t t )  and df ( t )  respectively. When t is a corner point , there

wil l  he occasions when f( t )  is to be interpreted as f (z( t ) ,  ~( t+ ) )  or

t~ z~t ) ,  ~(t -)) .  but the context will make this evident. The open unit

- 2nball in R is denoted B.

Lemma I. There is a constant M with the following property : given

any t in [ 0 , l J  and (s , v) in (z(t) , ~(t))  + B, then for all ~ in

af( s , v)  we have k I < M.

Proof: This follows fro m the hypothesis that f is Lipschttz on

bounded sets , and from the definition ( 2 . 4 )  of generalized gradient . Q. E. D.

Lemma 2. There exist positive numbers 
~l and such that , for

any t in [0 , 11, for any (s , v) in (z( t ) ,  ~(t)) + 6~B, for any (a , ~) . I
in 8f( s, v), we have I~3 J >

~~~~
.

Proof: Suppose the lemma false. Then for each i = 1, 2, . . . , there

exist t . in [ 0, 1J , (s 1 , v .)  in (z( t i ) , i(t 1
)) + (1/1)8 and (a

1, ~1) in

af( s ., v .) such that I~3 , I < 1/i . By taking subsequences we may assume

that, for some t in [0 , 11, for some (s , v) and (a , 0) in R 2
~ ,

we have t 1 t , (S ., v~) -• (s , v), and (a ,, ~3~) -. (a , 0). It follows that

(s , v) ( z ( t ) ,  ~( t ) ) .  Furthermore , by the upper-semicontinuity of the

generalized gradient [ 3 ) ,  we know that (a , 0) belongs to 8f(t) .  This

contradicts the regularity of 8f along z. 0. E. D.

t
p

- t 6 —



Now let any positive integer K be given , and choose SO

that , for any t in [0 , 1].  the inequality

i i ~s, vi  — (z(t), ~( t)) I <

implies

f(s,v) < f(z(t),1(t)) + 1/K .

Such a choice is possible because f is uniformly continuous on compact

sets. We may suppose that t K is less than 1/K , and also less than

the £ occurring in the definition of weak local minimum ( §  2).

Let us set

AK(t)  = U {~ : ~ 8f( s , v), i ( s , v) - (z( t ) ,  1(t) ) I < 1/K )

and de fine , for t such that f(t) > -1/K ,

GK( t )  = AK(t) 
~~ : y ~ < 0  for all ~:, 

in AK (t) }

For t such that f(t) < -I/K , set GK(t) R 2
~ .

Now let K be larger than l/o i . The following result then follows

fro m Lemmas 1 and 2:

Lemm&j . There is a constant N > 1 such that the convex cone GK(t)

has the following property for each t: given any s in Rri , there

exists v in R t
~ such that l v i  . $ N i s I  and (s , v)~ GK(t) .

We now define a multifunct ion from [0 , 1] to as follows:

EK( t , s) {v : l v i  .~~t K/a , (s , v) GK(t))

In the terminolo gy of [ 5 J ,  it follows that for I s  I < C K/ (ZN) , the

K
~~1 - ‘7-

__________ . .
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mul t i func t ion  E K(t , s) is nonempty , com pact -val ued , integrably bounded ,

measurable in t arid Ltpschitz in s with Lipschitz constant N.

Lemma 4. The arc x(t) 0 minimizes

q’(z(l) + x(l))

over all arcs x satisfying Ix(t) I < £ K/ (2N) and the constraints

x(0) ~ C0 
— z(0),  x( 1) C1 - z(l)

(4.1) x(t) € EK(t , x(t)) a.e .

Proof: Let any such x be given . Notice that it suffices to pro ve the

inequality

( 4 . 2 )  f( z + x , 1 + i c)~~~0 a . e . ,

since then the fact that z is optimal for our original problem over a

class of arc s including z + x yields

~( z(l) )  < q’( z(l) + x(l))

In proving (4 .  2), consider first any t such that f( t)  < -1/K . Then ( 4 . 2 )

follows from the choice of t K, since we have

I(x(t),~ (t))t <

Now let us consider any t such that f(t) > -1/K . We have

1
(4.3) f(z(t) + x(t),1(t) # x(t)) f(t) + f  Dg( K)d K ,

where the Lipschltz function g is defined by

g(K ) = f(z(t)  + Kx(t) , 1(t) + K~c(t )) ,

and Dg(K) exists a . e .  It now suffices to prove that Dg(\) is

- 18—
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nonpositive for K in [0,11 , since then (4.3) implies

f(z(t) + x(t ),  1(t) + c(t)) .~~ f ( t )  •~ 0

In turn , in order to prove the nonpositivity of D g (K ),  it suff ices  to

prove that Dg(K) belong s to the set (interval)

S = 8f(z ( t) + Xx(t) , 1(t) 4 K~ ( t)) . (x( t ) ,  c ( t ) )

in view of the definition of AK(t) and the fact that (x (t) ,  ~( tj )  belongs

to GK(t) . We proceed now to prove this.

According to [3, Proposition 1. 4] we have max{a : tT t s}  =

Iim sup[ f(z + Kx + h + ~x, 1 + kx + h ’ + óic) — f(z + Kx + h, z + Kx + h’)]/b

where the u r n  sup is taken as h and h ’ converge to 0 in R~

and ~ decreases to 0. By definition , Dg(K) Is equal to

lim[ f(z + Kx + bx , z + Kx + &,c) — f(z + Kx , +

(limit as 8 decreases to zero), whence

Dg(K ) < rnax {cJ : o~ S}

A similar argument with mtn{ if : o~ c s} show s that Dg(K) belong s to

the interval S. Q .E .D .

We now apply [ 5, Theorem 2 )  to the problem in the statement of

Lemma 4. If the function H : [0 , 11 x R~ )( R’~ -
~~ R is defined as follows :

H(t , s, p) max {p v : v ~ EK(t , s))  ,

we deduce that an arc and a scalar equal to 0 or 1 exist

such that :

( 4 . 4 )  (_
~ K, 0) ~H(t , 0,p K) a . e . ,

-19-
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(4 .  ~
) is normal to C0 

- z ( O )  at 0

(4.6) for some vector ½

- 

~K~K 
is normal to C

1 
- z(1) at 0

( 4 .  ~ I P K
(t )  + is never zero.

.~emma .~~~ For almost all t ,

( 4 .  ~ ~K 
s + • v .~~ 0 for all (s, v) € GK(t)

Proot: It suff ices  to show this for l v i  small , since GK(t) is a cone.

Let t be such that ( 4 . 4 )  holds. Then we may suppose that v belongs

to £K(t , s ), and consequently

(4 . 9) H(t , s,p K)
~~~

pK 
. V .

It is elementary to verify that the function H(t,x,p) is concave in x;

along with (4. 4), this implies that 
~~~ 

belongs to the superdifferential

at 0 of the concave function x H(t, x, 
~K~

• From this we deduce:

( 4 . 10) H( t , s, 
~~ 

— H(t , 0, 
~~ ~‘K

Since 0 belongs tc E(t , 0), It follows from the definition of

H that we have

( 4 .  11) H(t , 0, 
~~~ 

> 0

Now we combine ( 4 . 9 ) - (4. 11) to obtain ( 4 . 8 ) .  Q. E . D .

Rem4..rk. From Lemma S ariu the definition of GK(t) we deduce:

( 4 . 12) r~K ( t )  and P K(t) are zero when 1(t) ‘ - l /( K

We shall  now be consi 1ering all the above as the integer K

Increases to infinity. By taking subse~~ences, we may assume that the

-20-



‘K are either al l  0 or all eq ual to 1, and that the converge

to a vector r,. From the easily proven fact that the function x - H(t , x, p)

is L ipschi t z with constant N i p ! , along wi th ( 4 . 4 ) ,  we deduce :

14.13)  I P K i~~~N I P K I a .e . ,

where the constant N is independent of K (since GK increases

with K, N can only decrease as K increases).

Lemmp 6. There exist an arc p and a scalar K0 equal to 0 or 1

sat isfying ( 2 . 8 )  — (2.10) as well as:

(4 . 14) . s + p • v~~ 0 for all (s,v) E af (t ) *, a . e . ,

(4 .1 5)  p and p equal 0 when f(t) < 0

Proof: Case I: The “K are all 0. By scaling, we may assume that

all the are nonvan ish ing and = 1 ( f I ~ H denotes the

supremum norm on [0,11), where the rescaled func tions con tinue to

satisfy (4.12), (4.13), (4 . 5) and (4.6) (with KK 
= 0). In view of (4 .13) ,

the Dunford-Pettis criterion implies that admits a subsequence

converging weakly in 1} to ~ (say) . It follows for suitable sub-

sequences that ~ is the derivative of an arc p to which 
~K converges

uniformly (see [ 4 , Lemma 5] for the details of the argument) . Since p

satIsf ies  ( 4 . 1 3 )  and lI p 11 1, (2 .10) holds (with = 0), as well

as ( 2 . 8 )  - ( 2 . 9 ) .  Relation (4 .1 5 )  is an immediate consequence of (4.12).

In order to prove (4 .14 ) ,  note first that GK(t) increases to a f(t) *

for any t such that f ( t )  = 0 (this  uses the upper semicontinuity of

_ _ _ _ _ _  
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o f [ 3 J ) .  Furthermore , weak convergence preserves linear inequali t ies

su~~ as ( 4 . 8 ) ;  the resul t follows.

Case 2: The are all equal to I , and 11
~~K 1’ is bounded. In

the case the argument is unchanged , except that the need to rescale

initially is el iminated . The conclusions ( 2 . 9 )  - (2.10) hold with ~ = 1.

Case 3: The K K are all equal to I , and is unbounded.

We may assume that increases to infini ty.  We rescale the

arcs by dividing by “~~K 1t (which is certainly nonzero for K

large). The argument then continues as in Case 1, and we get conditions

( 2 . 9 )  and (2.10) with K0 0, since X K/ l lpK IJ converges to 0. Q . E .D .

In order to complete the proof of the theorem , it now suffices to

infer  ( 2 . 6 )  and ( 2 . 7 )  from (4.14) and ( 4 . l S) .  The condition (4 .14) says

that (~, p) belongs to (af ( t ) *) *, which is the closed convex cone

generated by a 1(t) . This has the following characterization , for any t

such that f ( t )  = 0:

**( O f ( t )  ) = : K > 0 , ~, a f(t ) }

because af( t )  is a com pac t convex set not containing zero . Invoking

a measurable selection theorem (see for example [9 ) ) ,  we obtain ( 2 . 6 )

when 1(t) = 0, and (2 .  7) follows by simpl y setting k( t )  = 0 when

1(t) < 0  and using (4.15) . Q.E . D.

Remark. The case in which f has an explicit dependence on t may

be treated exactly as above with the additional hypotheses:

(a) f(t , x, v) is a measurable function of t for each (x , v) ,

-22-
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(b) a f( t , x , v) is an upper semicontinuous multifurictiori (here,

of refers to the generalized gradient with respect to (x , v ) ) .

Both these hypotheses are automatically satisfied when f is

independent of t. In the case of t-dependence, (a) is required to

ensure that the mult ifunction constructed in the proof is measurable

in t , while (b) is necessary for the conclusions of Lemmas 2 and 6.
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